Convergence and Stability of Modified Random SP-Iteration for A Generalized Asymptotically Quasi-Nonexpansive Mappings
Authors
Abstract:
The purpose of this paper is to study the convergence and the almost sure T-stability of the modied SP-type random iterative algorithm in a separable Banach spaces. The Bochner in-tegrability of andom xed points of this kind of random operators, the convergence and the almost sure T-stability for this kind of generalized asymptotically quasi-nonexpansive random mappings are obtained. Our results are stochastic generalizations of the many deterministic results.
similar resources
convergence and stability of modified random sp-iteration for a generalized asymptotically quasi-nonexpansive mappings
the purpose of this paper is to study the convergence and the almost sure t-stability of the modied sp-type random iterative algorithm in a separable banach spaces. the bochner in-tegrability of andom xed points of this kind of random operators, the convergence and the almost sure t-stability for this kind of generalized asymptotically quasi-nonexpansive random mappings are obtained. our resu...
full textConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
full textStrong Convergence of CQ Iteration for Asymptotically Nonexpansive Mappings
Tae-Hwa Kim and Hong-Kun Xu [Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Analysis 64(2006)1140-1152 ] proved the strong convergence theorems of modified Mann iterations for asymptotically nonexpansive mappings and semigroups on bounded subset C of a Hilbert space by the CQ iteration method. The purpose of this paper is to mod...
full textConvergence of a One-step Iteration Scheme for Quasi-asymptotically Nonexpansive Mappings
In this paper, we use a one-step iteration scheme to approximate common fixed points of two quasi-asymptotically nonexpansive mappings. We prove weak and strong convergence theorems in a uniformly convex Banach space. Our results generalize the corresponding results of Yao and Chen [15] to a wider class of mappings while extend those of Khan, Abbas and Khan [4] to an improved one-step iteration...
full textConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
full textStrong Convergence of a Modified Halpern’s Iteration for Nonexpansive Mappings
A mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C. We denote by Fix T {x ∈ C : Tx x} the set of fixed points of T . In the last ten years, many papers have been written on the approximation of fixed point for nonlinear mappings by using some iterative processes see, e.g., 1–18 . An explicit iterative process was initially introduced, in 1967, by Halpern 3 i...
full textMy Resources
Journal title
volume 2 issue 1
pages 9- 21
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023